函数的连续性
教学目的:
1.理解掌握函数在一点连续须满足的三个条件的基础上,会判断函数在一点是否连续.
2.要会说明函数在一点不连续的理由.
3.要了解并掌握函数在开区间或闭区间连续的定义.
4.要了解闭区间上连续函数的性质,即最大值最小值定理
教学重点:函数在一点连续必须满足三个条件.
教学难点: 借助几何图象得出最大值最小值定理.
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
?本节教学知识点有函数在一点连续满足的三个条件,函数在一点连续概念,函数在开区间和闭区间连续的定义,函数在闭区间上有最大、最小值的定义,最大最小值定理 函数的连续性是建立在极限概念基础上的,又为以后微积分的学习做铺垫,它是承上启下的.函数在一点连续必须满足三个条件,这是要学生重点掌握的内容.函数在区间连续的定义也是建立在一点连续的基础上的.借助函数的几何图象得到闭区间上连续函数的一个性质,即最大值最小值定理.
函数在一点连续必须满足三个条件,缺一不可.如何得出这三个条件,可以借助函数图象,让学生观察、总结出来.同样借助几何图象得出最大值最小值定理.
在学生已掌握极限概念的基础上,并通过分析函数图象,让学生主动地总结出函数在一点连续的三个条件及概念.以及通过区间是由点组成的,进行概念的顺应,得出函数在区间上连续的概念.让学生主动地学习.